
Introduction
Five of the tests are presented. Each was run on an Intel Xeon Haswell
processor node of NASA’s Discover supercomputer. Each node has 28
cores (2.6 GHz each) and 128 GB of available memory. The Python, Java,
and Scala tests were also run on a Mac computer with an Intel i7-7700HQ
(4 cores, 2.8GHz each) with 16 GB of available memory. Each
measurement was taken in seconds to four digits of precision. Values
below 0.0001 were considered to be 0.

Copying Arrays
§ Rows and columns of a 9000×9000×3 array were copied into new

locations.
§ Code that used loops (iterative) was compared with vectorized code.
§ This test demonstrated each language’s speed in accessing non-

contiguous memory locations.

Loops

Vectorized

Laplace-Jacobi Solver
§ A 4th-order finite difference scheme[2] was used to approximate a

solution of the 2-D Laplace equation on a 200×200 grid.
§ Two versions of the Jacobi iterative solver were implemented: looping

over all grid points, and vectorization.
§ Approximation of differential equation solutions is common in scientific

computing.
Loops

Vectorized

I/O with NetCDF Files
§ Data was read from a collection of 7305 NetCDF files.
§ This type of operation is used by scientists to post-process files

generated by models.
§ Psudocode for the test reads:

§ The Mac has a solid-state drive, which likely allowed its test run more
quickly than when using Discover’s hard drives.

Acknowledgements

This work funded by Michigan Space Grant
Consortium, NASA grant #NNX15AJ20H.

Basic Comparison of High-Level 
Programming Languages

Computer Science / IT

Alexander MedemaMentor: Jules Kouatchou
Code 606.0

References, more tests and data, and upcoming source code are on modelingguru.nasa.gov:

0.1

1

10

100
Python Julia IDL R Matlab gfortran

gfortran -
O3 ifort ifort -O3

Ratio of Elapsed Time for Iterative Code to Elapsed Time 
for Vectorized Code

Language Elapsed time (Discover) Elapsed Time (Mac)
Python 660.8084 89.1922
Julia 787.4500
IDL 711.2615
R 1220.222
Matlab 848.5086

Language Option Elapsed Time (Discover) Elapsed Time (Mac)
Python 52.5485 60.2338
Julia 0.2359
Java 0.5390 0.4190
Scala 0.7320 0.5150
IDL 19.4499
R 74.3480
Matlab 0.8461
Fortran gfortran -O3 0.2240
C gcc -Ofast 0.3100

Language Option Elapsed Time (Discover) Elapsed Time (Mac)
Python 1.6078 1.8077
Julia 0.9191
IDL 1.2643
R 11.4400
Matlab 0.9188
Fortran gfortran -O3 0.3120

0.1

1

10

100
Python Julia IDL R Matlab gfortran

gfortran -
O3 ifort ifort -O3

Ratio of Elapsed Time for Iterative Code to Elapsed Time 
for Vectorized Code

Findings
§ No single language outperformed the others in all tests.
§ Python (and Numpy), IDL, and R consistently ran more quickly when

vectorized compared to when using loops.
§ With Julia, loops ran more quickly than vectorized code.
§ Matlab did not appear to change significantly in performance when

using loops versus vectorization in a case that involved no calculations.
When calculations were performed, vectorized Matlab code was faster
than iterative code.

§ Matlab's intrinsic FFT function ran the most quickly.
§ Java and Scala appeared to have notable performance relative to the

other languages when manipulating large strings.
§ R appeared to have notable performance relative to the other

languages when using recursion.
§ Languages' performance in numerical calculations relative to the others

depended on the specific task.
§ While some of the languages ran the I/O test more quickly than others,

running the test on a local Mac instead of Discover resulted in the
largest performance gain. Discover uses hard drives, whereas the Mac
has a solid-state disk. This indicated that hardware had a larger impact
on I/O performance than the language used.

Language Option Elapsed Time (Discover) Elapsed Time (Mac)
Python 2437.8560 2666.3496
Julia 16.1651
Java 5.2220 4.7530
Scala 5.7380 5.2830
IDL 1127.1094
R 2414.1030
Matlab 8.6276
Fortran gfortran -O3 8.8930
C gcc -Ofast 3.1900

Language Option Elapsed Time (Discover) Elapsed Time (Mac)
Python 1.6078 22.0945
Julia 0.9191
IDL 1.2643
R 11.4400
Matlab 0.9188
Fortran gfortran -O3 0.3120

Fibonacci Sequence
§ The elapsed time when recursively calculating the 45th Fibonacci

number was measured.

Language Option Elapsed Time (Discover) Elapsed Time (Mac)
Python 847.9716 800.0381
Julia 3.787
Java 4.8192 5.0130
Scala 5.1400 5.7720
IDL 304.2198
R 0.0100
Matlab 149.9634
Fortran gfortran -O3 0
C gcc -Ofast 2.2000

Fast Fourier Transform
§ The Fast Fourier Transform (FFT) and absolute value of a

20000×20000 matrix of complex values were taken.
§ Only intrinsic FFT functions were used.
§ The FFT algorithm is commonly applied in science and engineering.

Abstract
Fourteen simple test cases were used to compare Python, Julia, Java,
Scala, IDL, R, and Matlab, with Fortran and C included as a baseline. The
test cases were implemented from the angle of a novice programmer who
is not familiar with the optimization techniques available in the
languages. The tests aimed to highlight the strengths and weaknesses of
each language rather than to claim one language’s superiority to the
others. Measurements recorded the elapsed time to complete the same
test case operation with each of the different languages. The performance
was investigated in four main categories: loops and vectorization, string
manipulations, numerical calculations, and input/output. Specific
measurements tested the speed of memory access, recursion, file
processing, matrix calculations, iterative solvers, and other common
applications in scientific computing. No single language outperformed the
others in all of the tests. Expected trends were demonstrated, such as
which languages offer faster performance when using iteration versus
vectorization, and that intrinsic functions operate more quickly than
equivalent inline code. The performance of numerical calculations in each
language was found to significantly depend on the specific task.
Performance of I/O operations was found to depend more strongly on
hardware resources than the language used. The results can serve as a
reference for programmers who wish to determine which language(s) may
be suitable for specific applications.

Look and Say Sequence
§ The look and say sequence of order 48 was found, starting with

“1223334444.”
§ This tested languages’ handling of strings.

Language Elapsed time (Discover) Elapsed Time (Mac)
Python 34.7400 55.9375
Julia 20.751
IDL 70.8142
R 261.5460
Matlab 10.66232

Language Option Elapsed Time (Discover) Elapsed Time (Mac)
Python 251.1905 126.0252
Java 0.1211 0.1543
Scala 0.2170 0.2040
IDL 1612.4277
Matlab exceeded time limit
Fortran gfortran -O3 0.0120
C gcc -Ofast 182.4500

Loop over the years
Obtain the list of NetCDF files
Loop over the files

Read the variable (longitude/latitude/level)
Compute the zonal mean average (new array of latitude/level)
Extract the column array at latitude 86 degree South
Append the column array to a "master" array (or matrix)


